The Application of a Double CUSUM Algorithm in Industrial Data Stream Anomaly Detection
نویسندگان
چکیده
منابع مشابه
metrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
Anomaly Detection for Industrial Big Data
As the Industrial Internet of Things (IIoTa) grows, systems are increasingly being monitored by arrays of sensors returning time-series data at ever-increasing ‘volume, velocity and variety’b (i.e. Industrial Big Datac). An obvious use for these data is real-time systems condition monitoring and prognostic time to failure analysis (remaining useful life, RUL). (e.g. See white papers by Senseye....
متن کاملA Nonparametric Adaptive Cusum Method And Its Application In Network Anomaly Detection
Detecting anomalies that disrupt the symmetry in two-way communications is an important task for network defense systems. The subtlety and complexity of anomalous traffic challenge the existing detection methods, and the bottleneck is how to set thresholds to adapt to the variability in network traffic. In this paper, a nonparametric adaptive CUSUM (Cumulative Sum) method is presented to meet t...
متن کاملAnomaly Detection Based on a Multi-class CUSUM Algorithm for WSN
Security is one of the most important research issues in wireless sensor networks (WSN) applications. Given that the single detection threshold of the cumulative sum (CUSUM) algorithm causes longer detection delays and a lower detection rate, a multi-class CUSUM algorithm is hereby proposed. Firstly a maximum and minimum thresholds, which sensor nodes are able to reach during sending packet, ar...
متن کاملAnomaly Detection Based on a Multi-class CUSUM Algorithm for WSN
Security is one of the most important research issues in wireless sensor networks (WSN) applications. Given that the single detection threshold of the cumulative sum (CUSUM) algorithm causes longer detection delays and a lower detection rate, a multi-class CUSUM algorithm is hereby proposed. Firstly a maximum and minimum thresholds, which sensor nodes are able to reach during sending packet, ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2018
ISSN: 2073-8994
DOI: 10.3390/sym10070264